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Abstract. This paper reports the theoretical and simulation results of a gyro-Landau-fluid (GLF) extension
of the BOUT++ code which contributes to increasing the physics understanding of edge-localized-modes
(ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly suppressed
due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I ELMs, it is found
from linear simulations that retaining complete first order FLR corrections as resulting from the incomplete
“gyroviscous cancellation” in Braginskii’s two-fluid model is necessary to obtain good agreement with gyro-
fluid results for high ion temperature cases (Ti � 3keV ) when the ion density has a strong radial variation,
which goes beyond the simple local model of ion diamagnetic stabilization of ideal ballooning modes. The
maximum growth rate is inversely proportional to Ti because the FLR effect is proportional to Ti. The FLR
effect is also proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by
FLR effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid model,
namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure.
Hyper-resistivity is found to limit the radial spreading of ELMs by facilitating magnetic reconnection. Due to
the additional FLR-corrected nonlinear ExB convection of the ion gyro-center density, the gyro-fluid model
further limits the radial spreading of ELMs. Because edge plasmas have significant spatial inhomogeneities
and complicated boundary conditions, we have developed a fast non-Fourier method for the computation
of Landau-fluid closure terms based on an accurate and tunable approximation. The accuracy and the fast
computational scaling of the method have been demonstrated.

1. Introduction

This paper reports the theoretical and simulation results of a Gyro-Landau fluid (GLF)
extension of the BOUT++ code which contributes to increasing the physics understand-
ing of edge-localized-modes (ELMs). The large ELMs with low-to-intermediate-n peeling-
ballooning (P-B) modes are significantly suppressed due to finite Larmor radius (FLR) effects
when the ion temperature increases.

An isothermal truncation of the electromagnetic gyro-fluid model of Snyder and Hammett
[1] is developed for ELM simulations. The ion gyrocenter density and electron density are

1This work was performed for USDOE by LLNL under Contract DE-AC52-07NA27344, grants DE-FG03-
95ER54309 at general Atomics, and by the UK Engineering and Physical Sciences Research Council under
grant EP/H012605/1 and the Euro. Commun. under the contract of Association between EURATOM and
CCFE.
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combined to yield a gyro-kinetic vorticity density equation. The set of nonlinear electro-
magnetic gyro-fluid equations consists of gyro-kinetic vorticity density, ion gyrocenter den-
sity, the generalized Ohms law and Ampere’s law. The simple set of gyro-fluid equations
correctly describes a range of plasma instabilities relevant to edge plasmas, such as low-to-
intermediate-n peeling-ballooning modes and high-n drift-ballooning modes. The first-order
Padé’s approximation to Γ0(b) = 1/(1 + b) is used to get the potential by inverting the
gyrokinetic vorticity density. In the limit of small ion gyro-radius length, b = k2

⊥ρ
2
i � 1 (to

first order finite Larmor radius approximation in b), this set of equations is shown to be the
same as the two-fluid model that includes finite Larmor radius (FLR) effects. We demon-
strate that the complicated nonlinear gyro-viscous tensor in the two-fluid model naturally
appears in the isothermal gyro-fluid model as the FLR-corrected ExB convection for the
ion gyro-center density in the gyro-kinetic vorticity density equation and the FLR-corrected
gyro-kinetic vorticity density. This offers a simple, yet adequate description of ion dynamics
that is relatively easy to implement in nonlinear simulation codes. We also show that the
gyro-kinetic vorticity density is the charge density only in the cold-ion limit.

Because edge plasmas have significant spatial inhomogeneities and complicated boundary
conditions, it is desirable to compute the closure terms in configuration space. The nonlocal-
ity of Landau-fluid operators can make the naive direct computations of the closure terms
in configuration space via convolution or matrix multiplication very expensive. We have
therefore developed a fast non-Fourier method for the computation of Landau-fluid closure
terms based on an accurate and tunable approximation that can be numerically implemented
through the solution of matrix equations in which the matrices are tridiagonal or narrowly
banded. The accuracy, for the operator itself and for the resulting plasma response func-
tion and the fast computational scaling of the method have been demonstrated. A spectral
collocation analysis has been developed that greatly aids in the optimization of the approx-
imations for accuracy and computational cost, both for cases that are collisionless and for
cases where collisional and collisionless damping processes compete.

The organization of this paper is as follows. The basic set of equations and isothermal
simulation model are given in Sect. 2. Nonlinear simulation of Peeling-Ballooning modes is
discussed in Sect. 3. A new non-Fourier Method for applying the Landau-Fluid operators
are given in Sect. 4. Summary and discussion are given in Sect. 5.

2. An isothermal electromagnetic 3-field gyro-fluid model

To begin, a simple reduced set of gyro-fluid equations can be obtained by assuming that the
equilibrium ion and electron temperatures are constant and equal, and ions and electrons are
isothermal. The isothermal 3-field gyro-fluid model can be obtained from Snyder-Hammett
model [1] with the generalized Poisson equation and the generalized Ohm’s law:

∂niG
∂t

+ vEG · ∇niG = −
(

2

eB

)
b0 × κ · ∇piG (1)

∂ne
∂t

+ vE · ∇ne =
(

2

eB

)
b0 × κ · ∇pe −∇‖

(
nev‖e

)
, (2)

∂A‖

∂t
= −∂‖φ+

1

nee
∂‖pe +

η

µ0

∇2
⊥A‖ −

ηH
µ0

∇4
⊥A‖ (3)

J|| = − 1

µ0

∇2
⊥A‖ = −neev‖e, (4)
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ne = n̄i − ni [1− Γ0(b)]
Zieφ

T0

+ niρ
2
i (∇⊥ lnni) · ∇⊥

[
(Γ0 − Γ1)

(
Zieφ

T0

)]
, (5)

n̄i = Γ0(b)
1/2niG, b = −ρ2

i∇2
⊥. (6)

where n̄i is the gyro-phase independent part of the real space ion density. The notation
niG is the ion gyro-center density and ni is the particle density (equal to ne in the limit of
small Debye length, kλD � 1). For the various definitions of density, the relation between
the particle and gyro-center representations is given by the gyro-kinetic Poisson equation,
Eq. (5). Definitions of various quantities associated with plasma physics are as follows:

vEG = b0 ×∇⊥ΦG/B, vE = b0 ×∇⊥φ/B, B̃ = ∇A‖ × b0. (7)

The notation ΦG = Φ̄ = Γ1/2(b)φ has been introduced for gyro-averaged electric potential.
Here ∇‖F = B∂‖(F/B) for any F , ∂‖ = ∂0

‖ + b̃ · ∇, b̃ = B̃/B, ∂0
‖ = b0 · ∇, κ = b0 · ∇b0,

η is resistivity and ηH hyper-resistivity, also known as electron viscosity. The symbol tilde
represents the fluctuation quantities.

Since in the long wavelength regime of a quasi-neutral plasma n̄i and ne are two large numbers
and are almost equal n̄i ∼ ne and Eq. (5) can be rewritten as 1−n̄i/ne ' (k⊥ρi)

2eφ/Te, where
(k⊥ρi)

2 � 1 and eφ/Te ∼ 1, the desired solution of Poisson equation as written depends on
the difference of two large and almost equal numbers. Therefore it is difficult to accurately
obtain numerical solutions when niG and ne evolve separately because the numerical errors
in (n̄i(x, t)− ne(x, t)) may be on the same order as the ion polarization density.

Here we propose an alternative formulation. We define two new variables: gyrokinetic vor-
ticity density $G = eB(ne − niG) and gyrokinetic total pressure pG = piG + pe = niGTiG +
neTe = (niG + ne)T0, assuming electron temperature Te being equal to ion temperature TiG
Te = TiG = T0. For the isothermal model, which neglects all considerations of temperature
dynamics, we can rewrite the gyrokinetic vorticity density as

∂$G

∂t
+ vE · ∇$G − eB(vEG − vE) · ∇niG = 2b0 × κ · ∇pG +B∇‖j‖, (8)

∂pG
∂t

+ vE · ∇pG + T0(vEG − vE) · ∇niG = 0, (9)

$G = eB

{
Γ

1/2
0 (b)niG − niG − ni [1− Γ0(b)]

(
Zieφ

T0

)}

+nieBρ
2
i∇⊥ lnni · ∇⊥

[
(Γ0 − Γ1)

(
Zieφ

T0

)]
, (10)

ne =
1

2

(
pG
T0

+
$G

eB

)
, niG =

1

2

(
pG
T0

− $G

eB

)
, pe = neT0. (11)

Here the parallel current term and the diamagnetic flow when Ti 6= Te have been neglected
in pressure equation. The conlisional stress tensors can easily be included in connection to
fluid descriptions. The equations for A‖ and J‖ are the same as in Eqs. (3) and (4). This
formulation naturally couples different domains (core, the SOL and the private flux region)
together in the edge region through boundary conditions. Otherwise, it is not obvious how to
impose the parallel sheath boundary conditions for electrostatic potential φ at the divertor
plates if the generalized Poisson equation (5) is solved directly because full parallel physics
does not enter into this equation.
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2.1 Gyro-fluid vorticity density equation in the limit of small ion gyro-radius
length

In the long-wavelength limit where (k⊥ρi)
2 � 1, Γ0(b) = 1/(1 + b) ' 1 − b,Γ

1/2
0 (b) =

1/(1 + b/2) ' 1− b/2, (Γ0 − Γ1) ' 1,ΦG − φ = (1/2)ρ2
i∇2

⊥φ. The 3-field gyro-fluid model in
the limit of small ion gyro-radius length becomes

∂$G

∂t
+ vE · ∇$G −

eB

2T0

ρ2
i

[
b0 ×∇⊥ (∇2

⊥φ)

B

]
· ∇piG = 2b0 × κ · ∇pG +B∇‖j‖. (12)

∂pG
∂t

+ vE · ∇pG +
1

2
ρ2
i

[
b0 ×∇⊥ (∇2

⊥φ)

B

]
· ∇piG = 0, (13)

$G =
eB

T0

ρ2
i

[
niZie∇2

⊥φ+ niZie∇⊥ lnni · ∇⊥φ+
1

2
∇2
⊥piG

]
. (14)

The equations for A‖, J‖, ne, niG, and pe are the same as Eq. (3), (4), and (11), respectively.
By defining the two-fluid vorticity density $ = ωci[$G + (eB/2T0)ρ

2
i∇2

⊥pi], this equation
can be rewritten into the form which is the same as two-fluid version of vorticity equation
(2) given by Xu et al [2], excluding external momentum sources and collisional ion viscosity,
which is given here again for comparison and will be later referred as two-fluid model in
simulation sections:

∂$

∂t
+

(
vE + v‖ib0

)
· ∇$ = (2ωci)b0 × κ · ∇p+ niZie

4πv2
A

c2
∇‖j‖ (15)

− 1

2

{
niZievpi · ∇(∇2

⊥φ) + vE · ∇(∇2
⊥pi)−∇2

⊥[vE · ∇(pi)]
}

It should be noted, however, that Eq. (15) is written in CGS unites as the original paper
[2], while SI units are used in this paper. This resolves the long-standing issue regarding the
difference in vorticity equation derived from two-fluid and gyrokinetic framework. The gyro-
viscous terms emerge naturally from the FLR nonlinearities in the ion gyrocenter density
in the limit of small ion gyro-radius length. Furthermore, the gyro-fluid equations show a
simple physics picture and can be easily implemented in simulation codes. The one-half of ion
diamagnetic drift vorticity in $G [the last term on the right-hand-side of Eq. (14)] indicates
that the gyro-kinetic vorticity density $G is the charge density only in the cold-ion limit.

2.2 Gyro-fluid equilibrium and axisymmetric component of fluctuations

Ion equilibrium with subsonic flow velocity vi, can be characterized by the force balance
relation niZie∇Φ + ∇Pi = Zienivi × B. The parallel two-fluid vorticity (or simply two-
fluid vorticity) $ = ωcib · ∇ × (nimivi) therefore can be written as $ = niZie∇2

⊥Φ +
niZie∇⊥ lnni · ∇⊥Φ + ∇2

⊥Pi. For a typical ion equilibrium with subsonic ion flow velocity
and with weak ion temperature gradient in H-mode pedestal plasmas, the ExB drift is
balanced with ion diamagnetic drift, the equilibrium vorticity is almost zero, $0 ' 0, which
yields the isothermal relation ZieΦ0 ' T0 lnPi0.

Therefore to lowest order of the poloidal ion gyroradius to the ion temperature scale (ρpi/LTi �
1), subsonic ion flow implies that the pedestal is maintained by a large electron current with
the ions electrostatically confined. Since the two-fluid vorticity is different from gyro-fluid
vorticity by one-half of ion diamagnetic drift vorticity, for typical subsonic ion flow force
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balance means a non-zero gyro-fluid equilibrium vorticity,

$G0 = −
(
eB

2T0

)
ρ2
i∇2

⊥Pi0. (16)

Similarly, if we assume that the turbulence-generated steady-state axisymmetric component
of ion flow is subsonic (〈vi⊥〉ζ � vTi), the same isothermal relation holds for gyro-fluid
model as well ZieΦ ' T0 ln (Pi0 + 〈pi〉ζ). Here 〈pi〉ζ means the axisymmetric component of
ion pressure fluctuations, i.e. n=0 component. The same is true for the turbulence-generated
axisymmetric component of gyro-fluid vorticity:

〈$〉ζ = 0 =⇒ 〈$G〉ζ = −
(
eB

2T0

)
ρ2
i∇2

⊥〈pi〉ζ . (17)

In other words, we assume that the ion response is adiabatic for both equilibrium and
steady-state axisymmetric component of fluctuations.

3. ELM Gyro-fluid Simulations
T=1keV solid black: ideal MHD
T=2keV solid: two-fluid with gyroviscosity
T=3keV dash: gyro-fluid
T=4keV

gr
ow

th
ra

te
γ/

ω A

kθρi

toroidal mode number n

(1)

FIG. 1: The influence of the FLR physics on the lin-
ear growth rate of P-B modes versus toroidal mode
number n (top) or poloidal wavelength normalized
to ion Larmor radius kθρi (bottom, calculated with
T0 = 1keV for the ideal MHD P–B mode (black), with
two-fluid retaining the complete first-order FLR cor-
rections (solid), and with gyro-fluid full FLR effects
(dash) for different plasma temperature Ti.

Utilizing a Padé approximation for the mod-
ified Bessel functions, this set of equations
(1)-(6) is implemented in the BOUT++
framework with full ion FLR effects, except
that Γ0 − Γ1 = 1 is used in the last term of
Eq.(5), where we assume k⊥Ln � 1. This
simple isothermal 3-field gyro-fluid model
does not yet include Landau damping for
peeling-ballooning (P-B) modes with ω ∼
ω∗i � ωti where ω∗i is the ion diamagnetic
drift frequency and ωti = vti/qR is the ther-
mal ion transit frequency.

To study the physics of nonlinear P-B mode
dynamics, we choose circular cross-section
toroidal equilibria with an aspect ratio of
2.9 generated by the TOQ equilibrium code.
The plasma equilibrium is far from the marginal P-B instability threshold with a pedestal
toroidal pressure βt0 = 1.941× 10−2 and a normalized pedestal width Lped/a = 0.0486 [3,4].
In this study, the resistivity η, hyper-resistivity ηH and edge temperature T0 are treated
as constants in space-time across simulation domain. Except in Sect. 3.3 to investigate the
influence of equilibrium shear flow on peeling-ballooning instability and edge localized mode
crash, in the present simplified models in Sect. 3.1 and 3.2, both equilibrium flow and turbu-
lent zonal flow have been set to be zero for both two-fluid and gyro-fluid models in BOUT++
code: V0 = VE0 + V∇Pi

= 0 and 〈δv〉ζ = 〈vE〉ζ + 〈v∇Pi
〉ζ = 0. Therefore, the equilibrium

electric field is Er0 = (1/n0Zie)∇rPi0 with ion pressure Pi0 = P0/2, and the perturbed elec-
tric field is 〈Er〉ζ = (1/n0Zie)∇r〈Pi〉ζ . The zonal magnetic field is also set to be zero as it
is negligibly small compared to the equilibrium magnetic field B0. Radial boundary condi-
tions used are: $ = 0,∇2

⊥A‖ = 0, ∂P/∂ψ = 0, and ∂φ/∂ψ = 0 on inner radial boundary;
$ = 0,∇2

⊥A‖ = 0, P = 0, and φ = 0 on outer radial boundary. The domain is periodic in
parallel coordinate y (with a twist-shift condition) and periodic in binormal coordinate z.
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For efficiency, when performing nonlinear simulations, only 1/5th of the torus is simulated.
The number of grid cells in each coordinate are nψ = 512, ny = 64, and nz = 32.

3.1 Linear Gyro-fluid Simulations
SH=1015

SH=1014

SH=1013

SH=1012
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T0(keV)
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SH=µ0R3vA/ηH

FIG. 2: ELM size vs ion temperature Ti

and hyper-resistivity ηH . Lundquist num-
ber S = µ0R0vA/η = 108.

The initial simulation results are shown to be con-
sistent with the previous two-fluid model including
only the ion diamagnetic drift for constant density
profile. Retaining the complete first-order FLR cor-
rections (including all three terms on the second line
of Eq.(15)) is necessary to obtain good agreement
with gyro-fluid results for high ion temperature cases
(Ti � 3keV ) when the ion density has a strong radial
variation. The influence of gyro-radius effects on the
linear growth rate of P-B modes vs. n (top) and kθρi
(bottom, calculated with Ti=1kev) is summarized in Fig.1 for type-I ELMs. Good agreement
in the linear growth rate is shown in long-wavelength limit between the ideal MHD model
(black), two-fluid model (solid), and gyro-fluid model (dash). In both cases, the maximum
growth rate is inversely proportional to Ti because the FLR effect is proportional to Ti. The
FLR effect plays the role of a threshold in the growth rate. Only the perturbations with a
growth rate higher than the threshold become unstable. Therefore, as the ion temperature
increases, the FLR and the stabilizing effect increase. The FLR effect is also proportional
to toroidal mode number n, so for high n cases, the peeling-ballooning mode is stabilized by
FLR effects.

3.2 Nonlinear Gyro-fluid Simulations ∆
ELM

,1D

∆
ELM

,2D

γ/ω
A

EL
M

Siz
e(

%)

Ω0(krad/s)
FIG. 3: ELM size versus flow amplitude
Ω0. The flow shear scale length Lv =
3.4cm. The blue line is the mode growth
rate at linear phase. S = 108, and SH =
µ0R

2
0vA/ηH = 1012.

Nonlinear gyro-fluid simulations show results that are
similar to those from the two-fluid model, namely
that the P-B modes trigger magnetic reconnection,
which drives the collapse of the pedestal pressure
[3,4]. Hyper-resistivity is found to limit the radial
spreading of ELMs by facilitating magnetic reconnec-
tion. The ELM size is found to be insensitive to the
hyper-resistivity for large ELMs. Due to the addi-
tional FLR-corrected nonlinear ExB convection for
the ion gyro-center density, the gyro-fluid model fur-
ther limits the radial spreading of ELMs as shown
in Fig.2, and the FLR effect can significantly decrease the ELM size when the pedestal ion
temperature increases from 1keV to 4keV because high-n modes are stabilized. Furthermore,
zonal magnetic fields are shown to arise from an ELM event and finite drift-wave convection
in the generalized Ohms law.

3.3 Nonlinear simulations with equilibrium shear flow

The equilibrium E × B shear flow plays a dual role on peeling-ballooning modes and sub-
sequently ELM crashes [5]. On one hand, the flow shear can stabilize high-n P-B modes
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and twist the mode in poloidal direction, constraining the mode’s radial extent and reduc-
ing the size of the corresponding ELM. On the other hand, the shear flow also introduces
the Kelvin-Helmholtz mode, which can destabilize the peeling-ballooning modes. The over-
all effect of equilibrium shear flow on peeling ballooning modes and ELM crashes depends
on the competition between these two effects. When the flow shear is either small or very
large, it can reduce ELM size. However, for moderate values of flow shear, the destabilizing
effect from the Kelvin-Helmholtz drive is dominant and leads to larger ELM creases. Using a
hyperbolic tangent function as a phenomenological model of the net flow with a fixed shear
scale length Lv = 3.4cm and constant density profile, the two-fluid simulation results are
shown in Figure 3 for the ELM size and energy loss at the outboard mid-plane, as well as
the corresponding linear growth rates.

4. A new non-Fourier Method for applying the Landau-Fluid operators

(a)

spectral exact
spectral Lorentzian
FD Lorentzian
local model 

T

q

q T

FIG. 4: . (a) ratio of actual value of |k|
to fit using a sum of 7 scaled Lorentzians.
The “truncated” curve is for a simple trun-
cation fit, while the “colloc” curves are
for improved fits resulting from collocation
analysis. (b) Comparison of the nonlocal
flux resulting from a temperature profile
(black dotted), computed with the exact
spectral method (solid black), and sum-of-
Lorentzians methods (spectral - red; finite
difference - green, dashed), and the local
(diffusive) flux (blue, solid).

Tokamak edge plasmas have regions in which
kinetic effects are important. This strongly moti-
vates the implementation of Landau-fluid (LF)
operators [6,7] in edge-plasma fluid codes such
as BOUT++. However, they also have significant
spatial inhomogeneities and complicated boundary
conditions, which pose significant difficulties for
the standard Fourier implementations. We have
therefore developed non-Fourier, configuration-space-
based approaches for the computation of these oper-
ators. A simple non-Fourier approximation to 1/|k|
Landau-fluid operator is a truncation of a self-similar
infinite sum:

1

|k|
≈

N∑
n=0

αnk0

k2 + (αnk0)
2 (18)

One of these is a “fast” method, with Fourier-like
computational scaling, based on an approximation
by a sum of Lorentzians which can be numerically
implemented through the solution of tridiagonal or
narrowly banded matrix equations. Certain choices
of the constants α, k0 and N give an excellent fit to
1/|k| in Fourier space. A spectral collocation analysis
has been developed that greatly aids in the optimiza-
tion of such approximations for accuracy and com-
putational cost, across all regimes of collisionality.
Fig. 4(a) shows that such an approximation using
seven Lorentzians (N=7) can be accurate for the col-
lisionless case to within 1.5% relative error over a spectral range of 5× 103. Fig. 4(b) shows
that the nonlocal flux using this method agrees well with the result from the spectral method.

We have also implemented and compared the computational cost of a variety of other
approaches, including the Fourier approach, direct convolution, and matrix multiplication.
Fig.5 shows that the fast non-Fourier approach has a computational cost scaling for large



TH/5-2Rb 8

numbers of grid cells similar to the Fourier approach. For modest numbers of grid cells,
(<100), direct matrix multiplication or convolution are viable alternatives, and can be more
efficient than even the Fourier approach. The fast non-Fourier approach has been imple-
mented for the parallel LF closure in BOUT++, and implementation of the other approaches
and for the toroidal LF closure is underway. These will be exercised on a variety of linear
and turbulent microinstability-driven test cases.

5. Summary and Discussion

FIG. 5: Computational timings of vari-
ous approaches to the application of the
Landau-fluid |k| operator.

In conclusion, an isothermal electromagnetic 3-field
gyro-fluid model has been developed and imple-
mented in the BOUT++ framework to study the
physics of nonlinear peeling-ballooning mode dynam-
ics. It is found from linear simulations that retaining
complete first order FLR corrections as resulting from
the incomplete “gyroviscous cancellation” in Bragin-
skii’s two-fluid model [i.e., including all three terms
on the second line of Eq.(15)] is necessary to obtain
good agreement with gyro-fluid results for high ion
temperature cases (Ti � 3keV ) when the ion density has a strong radial variation, which goes
beyond the simple local model of ion diamagnetic stabilization of ideal ballooning modes.
Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid
model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse
of the pedestal pressure. Hyper-resistivity is still required in gyro-fluid simulations to facili-
tate magnetic reconnection. Due to the additional FLR-corrected nonlinear ExB convection
for the ion gyro-center density, the gyro-fluid model further limits the radial spreading of
ELMs, and the FLR effect can significantly decrease the ELM size when the pedestal ion
temperature increases from 1keV to 4keV because high-n modes are stabilized. Finally, we
have developed non-Fourier, configuration-space-based approaches for the computation of
Landau-fluid operators. We find that the fast non-Fourier approach has a computational
cost scaling for large numbers of grid cells similar to the Fourier approach.
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